论文阅读:A Survey on Hallucination in Large Vision-Language Models
  1. 摘要
  2. Introduction
  3. Hallucination in the Era of LVLM
    1. Large Vision-Language Models
      1. 关于幻觉的一些挑战
  4. Evaluation Methods and Benchmarks
    1. Evaluation on Non-Hallucinatory Generation
    2. Evaluation on Hallucination Discrimination
    3. Evaluation Benchmarks
  5. 幻觉的原因
    1. Data
      1. data bias
      2. Annotation Irrelevance
    2. Vision Encoder
      1. Limited Visual Resolution
      2. Fine-grained Visual Semantics
    3. Modality Aligning
      1. Connection Module Simplicity
      2. Limited Token Constraints
    4. LLM
      1. Insufficient Context Attention
      2. Stochastic Sampling Decoding
      3. Capability Misalignment
  6. Mitigation of LVLM Hallucination
    1. Data
      1. 缓解 bias
      2. Annotation Enrichment
    2. Vision Encoder
    3. Connection Module
    4. LLM
    5. Mitigation via Post-processing

以上